- Home
- Standard 12
- Mathematics
જો $\left| {\begin{array}{*{20}{c}}
{a - b - c}&{2a}&{2a}\\
{2b}&{b - c - a}&{2b}\\
{2c}&{2c}&{c - a - b}
\end{array}} \right|$ $ = \left( {a + b + c} \right)\,{\left( {x + a + b + c} \right)^2}$ , $x \ne 0$ અને $a + b + c \ne 0$, તો $x$ મેળવો.
$abc$
$ - 2 \left( {a + b + c} \right)$
$ 2 \left( {a + b + c} \right)$
$ - \left( {a + b + c} \right)$
Solution
${R_1} \to {R_1} + {R_2} + {R_3}$
$\left( {a + b + c} \right)\left| {\begin{array}{*{20}{c}}
1&1&1\\
{2b}&{b – a – c}&{2b}\\
{2c}&{2c}&{c – a – b}
\end{array}} \right|$
${c_3} \to {c_3} – {c_1},{c_2} \to {c_2} – {c_1}$
$ = \left( {a + b + c} \right)\left| {\begin{array}{*{20}{c}}
1&0&0\\
{2b}&{ – \left( {a + b + c} \right)}&0\\
{2c}&0&{ – \left( {a + b + c} \right)}
\end{array}} \right|$
$ = {\left( {a + b + c} \right)^3}$
$ = \left( {a + b + c} \right){\left( {x + a + b + c} \right)^2}$